\(\int \frac {\sqrt {a d e+(c d^2+a e^2) x+c d e x^2}}{x^2 (d+e x)} \, dx\) [442]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 40, antiderivative size = 137 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^2 (d+e x)} \, dx=-\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d x}-\frac {\left (c d^2-a e^2\right ) \text {arctanh}\left (\frac {2 a d e+\left (c d^2+a e^2\right ) x}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{2 \sqrt {a} d^{3/2} \sqrt {e}} \]

[Out]

-1/2*(-a*e^2+c*d^2)*arctanh(1/2*(2*a*d*e+(a*e^2+c*d^2)*x)/a^(1/2)/d^(1/2)/e^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e
*x^2)^(1/2))/d^(3/2)/a^(1/2)/e^(1/2)-(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/d/x

Rubi [A] (verified)

Time = 0.09 (sec) , antiderivative size = 137, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {863, 820, 738, 212} \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^2 (d+e x)} \, dx=-\frac {\left (c d^2-a e^2\right ) \text {arctanh}\left (\frac {x \left (a e^2+c d^2\right )+2 a d e}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{2 \sqrt {a} d^{3/2} \sqrt {e}}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{d x} \]

[In]

Int[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(x^2*(d + e*x)),x]

[Out]

-(Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(d*x)) - ((c*d^2 - a*e^2)*ArcTanh[(2*a*d*e + (c*d^2 + a*e^2)*x)/
(2*Sqrt[a]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(2*Sqrt[a]*d^(3/2)*Sqrt[e])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 738

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 820

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[(-(e*f - d*g))*(d + e*x)^(m + 1)*((a + b*x + c*x^2)^(p + 1)/(2*(p + 1)*(c*d^2 - b*d*e + a*e^2))), x] - Dist[
(b*(e*f + d*g) - 2*(c*d*f + a*e*g))/(2*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x]
, x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[S
implify[m + 2*p + 3], 0]

Rule 863

Int[((x_)^(n_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_))/((d_) + (e_.)*(x_)), x_Symbol] :> Int[x^n*(a/d + c*(
x/e))*(a + b*x + c*x^2)^(p - 1), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b
*d*e + a*e^2, 0] &&  !IntegerQ[p] && ( !IntegerQ[n] ||  !IntegerQ[2*p] || IGtQ[n, 2] || (GtQ[p, 0] && NeQ[n, 2
]))

Rubi steps \begin{align*} \text {integral}& = \int \frac {a e+c d x}{x^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx \\ & = -\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d x}-\frac {\left (-2 a c d^2 e+a e \left (c d^2+a e^2\right )\right ) \int \frac {1}{x \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{2 a d e} \\ & = -\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d x}+\frac {\left (-2 a c d^2 e+a e \left (c d^2+a e^2\right )\right ) \text {Subst}\left (\int \frac {1}{4 a d e-x^2} \, dx,x,\frac {2 a d e-\left (-c d^2-a e^2\right ) x}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{a d e} \\ & = -\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d x}-\frac {\left (c d^2-a e^2\right ) \tanh ^{-1}\left (\frac {2 a d e+\left (c d^2+a e^2\right ) x}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{2 \sqrt {a} d^{3/2} \sqrt {e}} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(841\) vs. \(2(137)=274\).

Time = 9.25 (sec) , antiderivative size = 841, normalized size of antiderivative = 6.14 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^2 (d+e x)} \, dx=\frac {\sqrt {a e+c d x} \sqrt {d+e x} \left (-\frac {\sqrt {a e+c d x} \left (a^2 e^4 \sqrt {d+e x}+2 a c d e^2 \left (2 d \sqrt {d-\frac {a e^2}{c d}}+2 e \sqrt {d-\frac {a e^2}{c d}} x-4 d \sqrt {d+e x}-3 e x \sqrt {d+e x}\right )+c^2 \left (d^2 e^2 x^2 \left (-4 \sqrt {d-\frac {a e^2}{c d}}+\sqrt {d+e x}\right )+d^3 e x \left (-12 \sqrt {d-\frac {a e^2}{c d}}+8 \sqrt {d+e x}\right )+d^4 \left (-8 \sqrt {d-\frac {a e^2}{c d}}+8 \sqrt {d+e x}\right )\right )\right )}{a^2 d e^4 x-2 a c d^2 e^2 x \left (4 d+3 e x-2 \sqrt {d-\frac {a e^2}{c d}} \sqrt {d+e x}\right )+c^2 d^3 x \left (8 d^2+8 d e x+e^2 x^2-8 d \sqrt {d-\frac {a e^2}{c d}} \sqrt {d+e x}-4 e \sqrt {d-\frac {a e^2}{c d}} x \sqrt {d+e x}\right )}+\frac {\sqrt {c d^2-a e^2} \left (c d^2-a e^2+\sqrt {c} d \sqrt {c d^2-a e^2}\right ) \arctan \left (\frac {\sqrt {-2 c d^2+a e^2-2 \sqrt {c} d \sqrt {c d^2-a e^2}} \sqrt {a e+c d x}}{\sqrt {a} \sqrt {c} \sqrt {d} \sqrt {e} \left (\sqrt {d-\frac {a e^2}{c d}}-\sqrt {d+e x}\right )}\right )}{\sqrt {a} d^{3/2} \sqrt {e} \sqrt {-2 c d^2+a e^2-2 \sqrt {c} d \sqrt {c d^2-a e^2}}}+\frac {\sqrt {c d^2-a e^2} \left (-c d^2+a e^2+\sqrt {c} d \sqrt {c d^2-a e^2}\right ) \arctan \left (\frac {\sqrt {-2 c d^2+a e^2+2 \sqrt {c} d \sqrt {c d^2-a e^2}} \sqrt {a e+c d x}}{\sqrt {a} \sqrt {c} \sqrt {d} \sqrt {e} \left (\sqrt {d-\frac {a e^2}{c d}}-\sqrt {d+e x}\right )}\right )}{\sqrt {a} d^{3/2} \sqrt {e} \sqrt {-2 c d^2+a e^2+2 \sqrt {c} d \sqrt {c d^2-a e^2}}}\right )}{\sqrt {(a e+c d x) (d+e x)}} \]

[In]

Integrate[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(x^2*(d + e*x)),x]

[Out]

(Sqrt[a*e + c*d*x]*Sqrt[d + e*x]*(-((Sqrt[a*e + c*d*x]*(a^2*e^4*Sqrt[d + e*x] + 2*a*c*d*e^2*(2*d*Sqrt[d - (a*e
^2)/(c*d)] + 2*e*Sqrt[d - (a*e^2)/(c*d)]*x - 4*d*Sqrt[d + e*x] - 3*e*x*Sqrt[d + e*x]) + c^2*(d^2*e^2*x^2*(-4*S
qrt[d - (a*e^2)/(c*d)] + Sqrt[d + e*x]) + d^3*e*x*(-12*Sqrt[d - (a*e^2)/(c*d)] + 8*Sqrt[d + e*x]) + d^4*(-8*Sq
rt[d - (a*e^2)/(c*d)] + 8*Sqrt[d + e*x]))))/(a^2*d*e^4*x - 2*a*c*d^2*e^2*x*(4*d + 3*e*x - 2*Sqrt[d - (a*e^2)/(
c*d)]*Sqrt[d + e*x]) + c^2*d^3*x*(8*d^2 + 8*d*e*x + e^2*x^2 - 8*d*Sqrt[d - (a*e^2)/(c*d)]*Sqrt[d + e*x] - 4*e*
Sqrt[d - (a*e^2)/(c*d)]*x*Sqrt[d + e*x]))) + (Sqrt[c*d^2 - a*e^2]*(c*d^2 - a*e^2 + Sqrt[c]*d*Sqrt[c*d^2 - a*e^
2])*ArcTan[(Sqrt[-2*c*d^2 + a*e^2 - 2*Sqrt[c]*d*Sqrt[c*d^2 - a*e^2]]*Sqrt[a*e + c*d*x])/(Sqrt[a]*Sqrt[c]*Sqrt[
d]*Sqrt[e]*(Sqrt[d - (a*e^2)/(c*d)] - Sqrt[d + e*x]))])/(Sqrt[a]*d^(3/2)*Sqrt[e]*Sqrt[-2*c*d^2 + a*e^2 - 2*Sqr
t[c]*d*Sqrt[c*d^2 - a*e^2]]) + (Sqrt[c*d^2 - a*e^2]*(-(c*d^2) + a*e^2 + Sqrt[c]*d*Sqrt[c*d^2 - a*e^2])*ArcTan[
(Sqrt[-2*c*d^2 + a*e^2 + 2*Sqrt[c]*d*Sqrt[c*d^2 - a*e^2]]*Sqrt[a*e + c*d*x])/(Sqrt[a]*Sqrt[c]*Sqrt[d]*Sqrt[e]*
(Sqrt[d - (a*e^2)/(c*d)] - Sqrt[d + e*x]))])/(Sqrt[a]*d^(3/2)*Sqrt[e]*Sqrt[-2*c*d^2 + a*e^2 + 2*Sqrt[c]*d*Sqrt
[c*d^2 - a*e^2]])))/Sqrt[(a*e + c*d*x)*(d + e*x)]

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(707\) vs. \(2(117)=234\).

Time = 0.72 (sec) , antiderivative size = 708, normalized size of antiderivative = 5.17

method result size
default \(\frac {-\frac {{\left (a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}\right )}^{\frac {3}{2}}}{a d e x}+\frac {\left (e^{2} a +c \,d^{2}\right ) \left (\sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}+\frac {\left (e^{2} a +c \,d^{2}\right ) \ln \left (\frac {\frac {1}{2} e^{2} a +\frac {1}{2} c \,d^{2}+c d e x}{\sqrt {c d e}}+\sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}\right )}{2 \sqrt {c d e}}-\frac {a d e \ln \left (\frac {2 a d e +\left (e^{2} a +c \,d^{2}\right ) x +2 \sqrt {a d e}\, \sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}}{x}\right )}{\sqrt {a d e}}\right )}{2 a d e}+\frac {2 c \left (\frac {\left (2 c d e x +e^{2} a +c \,d^{2}\right ) \sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}}{4 c d e}+\frac {\left (4 a c \,d^{2} e^{2}-\left (e^{2} a +c \,d^{2}\right )^{2}\right ) \ln \left (\frac {\frac {1}{2} e^{2} a +\frac {1}{2} c \,d^{2}+c d e x}{\sqrt {c d e}}+\sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}\right )}{8 c d e \sqrt {c d e}}\right )}{a}}{d}-\frac {e \left (\sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}+\frac {\left (e^{2} a +c \,d^{2}\right ) \ln \left (\frac {\frac {1}{2} e^{2} a +\frac {1}{2} c \,d^{2}+c d e x}{\sqrt {c d e}}+\sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}\right )}{2 \sqrt {c d e}}-\frac {a d e \ln \left (\frac {2 a d e +\left (e^{2} a +c \,d^{2}\right ) x +2 \sqrt {a d e}\, \sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}}{x}\right )}{\sqrt {a d e}}\right )}{d^{2}}+\frac {e \left (\sqrt {c d e \left (x +\frac {d}{e}\right )^{2}+\left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}+\frac {\left (e^{2} a -c \,d^{2}\right ) \ln \left (\frac {\frac {e^{2} a}{2}-\frac {c \,d^{2}}{2}+c d e \left (x +\frac {d}{e}\right )}{\sqrt {c d e}}+\sqrt {c d e \left (x +\frac {d}{e}\right )^{2}+\left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}\right )}{2 \sqrt {c d e}}\right )}{d^{2}}\) \(708\)

[In]

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x^2/(e*x+d),x,method=_RETURNVERBOSE)

[Out]

1/d*(-1/a/d/e/x*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)+1/2*(a*e^2+c*d^2)/a/d/e*((a*d*e+(a*e^2+c*d^2)*x+c*d*e*
x^2)^(1/2)+1/2*(a*e^2+c*d^2)*ln((1/2*e^2*a+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^
(1/2))/(c*d*e)^(1/2)-a*d*e/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*d^2)*x+2*(a*d*e)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*
d*e*x^2)^(1/2))/x))+2*c/a*(1/4*(2*c*d*e*x+a*e^2+c*d^2)/c/d/e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+1/8*(4*a*
c*d^2*e^2-(a*e^2+c*d^2)^2)/c/d/e*ln((1/2*e^2*a+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x
^2)^(1/2))/(c*d*e)^(1/2)))-e/d^2*((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+1/2*(a*e^2+c*d^2)*ln((1/2*e^2*a+1/2*
c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2)-a*d*e/(a*d*e)^(1/2)*ln((2*
a*d*e+(a*e^2+c*d^2)*x+2*(a*d*e)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/x))+e/d^2*((c*d*e*(x+d/e)^2+(a*
e^2-c*d^2)*(x+d/e))^(1/2)+1/2*(a*e^2-c*d^2)*ln((1/2*e^2*a-1/2*c*d^2+c*d*e*(x+d/e))/(c*d*e)^(1/2)+(c*d*e*(x+d/e
)^2+(a*e^2-c*d^2)*(x+d/e))^(1/2))/(c*d*e)^(1/2))

Fricas [A] (verification not implemented)

none

Time = 0.36 (sec) , antiderivative size = 355, normalized size of antiderivative = 2.59 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^2 (d+e x)} \, dx=\left [-\frac {4 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} a d e + {\left (c d^{2} - a e^{2}\right )} \sqrt {a d e} x \log \left (\frac {8 \, a^{2} d^{2} e^{2} + {\left (c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4}\right )} x^{2} + 4 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, a d e + {\left (c d^{2} + a e^{2}\right )} x\right )} \sqrt {a d e} + 8 \, {\left (a c d^{3} e + a^{2} d e^{3}\right )} x}{x^{2}}\right )}{4 \, a d^{2} e x}, -\frac {2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} a d e - {\left (c d^{2} - a e^{2}\right )} \sqrt {-a d e} x \arctan \left (\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, a d e + {\left (c d^{2} + a e^{2}\right )} x\right )} \sqrt {-a d e}}{2 \, {\left (a c d^{2} e^{2} x^{2} + a^{2} d^{2} e^{2} + {\left (a c d^{3} e + a^{2} d e^{3}\right )} x\right )}}\right )}{2 \, a d^{2} e x}\right ] \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x^2/(e*x+d),x, algorithm="fricas")

[Out]

[-1/4*(4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*a*d*e + (c*d^2 - a*e^2)*sqrt(a*d*e)*x*log((8*a^2*d^2*e^2
+ (c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4)*x^2 + 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d*e + (c*d^2 +
a*e^2)*x)*sqrt(a*d*e) + 8*(a*c*d^3*e + a^2*d*e^3)*x)/x^2))/(a*d^2*e*x), -1/2*(2*sqrt(c*d*e*x^2 + a*d*e + (c*d^
2 + a*e^2)*x)*a*d*e - (c*d^2 - a*e^2)*sqrt(-a*d*e)*x*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2
*a*d*e + (c*d^2 + a*e^2)*x)*sqrt(-a*d*e)/(a*c*d^2*e^2*x^2 + a^2*d^2*e^2 + (a*c*d^3*e + a^2*d*e^3)*x)))/(a*d^2*
e*x)]

Sympy [F]

\[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^2 (d+e x)} \, dx=\int \frac {\sqrt {\left (d + e x\right ) \left (a e + c d x\right )}}{x^{2} \left (d + e x\right )}\, dx \]

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2)/x**2/(e*x+d),x)

[Out]

Integral(sqrt((d + e*x)*(a*e + c*d*x))/(x**2*(d + e*x)), x)

Maxima [F]

\[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^2 (d+e x)} \, dx=\int { \frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{{\left (e x + d\right )} x^{2}} \,d x } \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x^2/(e*x+d),x, algorithm="maxima")

[Out]

integrate(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)/((e*x + d)*x^2), x)

Giac [A] (verification not implemented)

none

Time = 0.33 (sec) , antiderivative size = 220, normalized size of antiderivative = 1.61 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^2 (d+e x)} \, dx=\frac {{\left (c d^{2} - a e^{2}\right )} \arctan \left (-\frac {\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}}{\sqrt {-a d e}}\right )}{\sqrt {-a d e} d} - \frac {{\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )} c d^{2} + {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )} a e^{2} + 2 \, \sqrt {c d e} a d e}{{\left (a d e - {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )}^{2}\right )} d} \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x^2/(e*x+d),x, algorithm="giac")

[Out]

(c*d^2 - a*e^2)*arctan(-(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))/sqrt(-a*d*e))/(sqrt(-a*d
*e)*d) - ((sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))*c*d^2 + (sqrt(c*d*e)*x - sqrt(c*d*e*x^
2 + c*d^2*x + a*e^2*x + a*d*e))*a*e^2 + 2*sqrt(c*d*e)*a*d*e)/((a*d*e - (sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2
*x + a*e^2*x + a*d*e))^2)*d)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^2 (d+e x)} \, dx=\int \frac {\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}}{x^2\,\left (d+e\,x\right )} \,d x \]

[In]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)/(x^2*(d + e*x)),x)

[Out]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)/(x^2*(d + e*x)), x)